

6. Space physics

6.1 Earth and the solar system

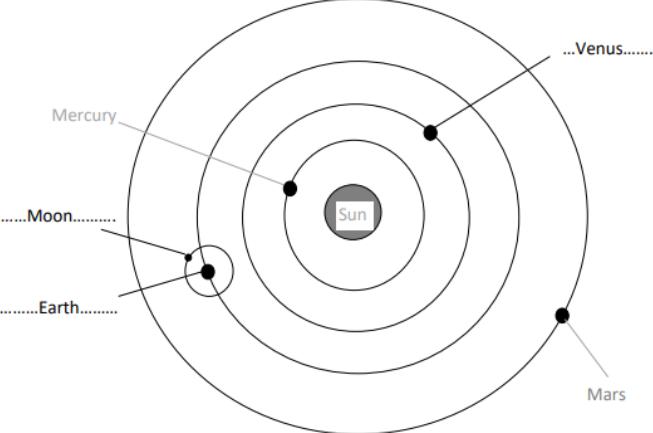
Paper 3 and 4

Answer Key

Paper 3

Q1.

Question	Answer	Marks
(a)	1 Mercury 2 Mars 3 Jupiter 4 Saturn	B2


Q2.

Question	Answer	Marks
(a)(i)	planet X: Venus	B1
	planet Y: Uranus	B1
(a)(ii)	1. Mercury rocky or Jupiter gaseous	B1
	2. Mercury small or Jupiter large	B1
(a)(iii)	gases	B1
	(force of) gravity	B1
	the Milky Way	B1
(b)(i)	days	B1
(b)(ii)	month	B1
(b)(iii)	light-years	B1

Q3.

Question	Answer	Mark
(a)(i)	Earth has greater mass OR	B1
(a)(ii)	243 (Earth days)	A3
	5832 ÷ 24	(C2)
	idea that one rotation on its axis equals one day	(C1)
(a)(iii)	360 (s)	A4
	$108.2 \times 10^9 \div 3.0 \times 10^8$	(C3)
	speed = distance ÷ time OR ($t =$) $s = v$	(C1)
	conversion 1 km = 1000 m	(C1)
(b)	distance	M1
	travelled (in space) by light in one year owtwe	A1

Q4.

Question	Answer	Mark
(a)		B1
Moon.....	B1
Earth.....	B1
Venus.....	
(b)	Hydrogen and	B1
	Helium (answers maybe in either order)	B1
	visible (light) and	B1
	Ultraviolet (answers maybe in either order)	B1
(c)	100 000 (light-years)	B1

Q5.

Question	Answer	Marks
(a)	at least 4 named	M1
	all 5 in correct order	A1
(b)	any two from: minor / dwarf planets / Pluto asteroids comets moons / natural satellites	B2
(c)	Mercury is rocky AND small . (answers maybe in either order)	B1
	Jupiter is gaseous AND large . (answers maybe in either order)	B1

Q6.

Question	Answer	Marks
(a)	Earth rotates / spins (on its axis) (once) every 24 hours / day OR daily	M1 A1
(b)	Mercury Venus Earth Mars 3 correct planets in correct order	
(c)	hydrogen helium	B1 B1
(d)	Milky Way	B1

Q7.

Question	Answer	Marks
(a)	Mercury Venus Earth Mars 3 correct planets	
	in correct order	M1 A1

Paper 4

Q8.

Question	Answer	Marks
<input type="checkbox"/> (a)(i)	Earth / Mars / Jupiter / Saturn / Uranus / Neptune	B1
<input type="checkbox"/> (a)(ii)	Mercury	B1
<input type="checkbox"/> (b)	$3.6 \times 10^4 \text{ (m / s)}$ $(T =) 220 \times 24 \times 60 \times 60 \text{ OR } (T =) 1.9 \times 10^7 \text{ (s)}$ $(v =) \frac{2\pi r}{T} \text{ OR } (v =) \frac{2\pi \times 1.1 \times 10^{11}}{220 \times 24 \times 60 \times 60}$	A3 C1 C1
<input type="checkbox"/> (c)	The further away from the Sun the slower the orbital speed / ORA	B1
<input type="checkbox"/> (d)	1 <i>any one from:</i> <ul style="list-style-type: none"> • comet has an elliptical orbit • speed of comet is faster when it closer to the Sun • speed of comet is slower when it is further away from the Sun 2 <i>any one from:</i> <ul style="list-style-type: none"> • (conservation of energy requires that) transfers between kinetic and gravitational stores (as comet changes speed) • total energy remains constant • energy cannot be created or destroyed 3 as radius of orbit decreases, gravitational energy decreases and kinetic energy increases ORA	B1 B1 B1

Q9.

Question	Answer	Marks
(a)	any two from: • minor planets OR dwarf planets • comets • asteroids	B2
(b)	elliptical	B1
(c)	kinetic energy (store) decreases AND potential energy (store) increases (as object moves from A to B) energy is conserved	B1 B1
(d)	$2.6 \times 10^3 \text{ s}$ $v = s/t \text{ OR } (t = s/v \text{ OR } 7.8 \times 10^{11} / 3.0 \times 10^8)$	A2 C1

Q10.

Question	Answer	Marks
(a)	Venus	B1
(b)	The larger the mass (of the planet), the larger the gravitational field strength (at the surface)	B1
(c)	orbit of planets is elliptical / is not circular	B1
(d)	correct conversion of T into seconds i.e. $365.2 \times (24 \times 60 \times 60) \text{ OR } 3.2 \times 10^7$ $(v = \{2\pi r\} / T)$ $2\pi \times 149.6 \times 10^6 / 365.2 \times 24 \times 60 \times 60$	B1 B1 B1

Q11.

Question	Answer	Marks
(a)(i)	(speed) decreases (from X to Y) and then increases (from Y to X)	B1
(a)(ii)	any three from: • gravitational (potential) energy (GPE) transfers to kinetic energy (KE) or vice versa • KE transfers to GPE from X to Y AND GPE transfers to KE from Y to X • speed decreases as KE decreases / ORA • most GPE at Y OR least GPE at X • total (of GPE + KE) energy is constant	B3
(b)(i)	$-230 \text{ }(^{\circ}\text{C})$	B1
(b)(ii)	(white surface) is a poor absorber / good reflector / poor emitter of IR / radiation OR black / other surface is a good absorber / poor reflector / good emitter of IR / radiation any one from: • (the white surface) increases in temperature less when facing the Sun • (the white surface) decreases in temperature less when facing away (from Sun) • the black / other surfaces increases in temperature more when facing the Sun • the black / other surface decreases in temperature more when facing away (from Sun) • less variation in temperature on white surface (during one whole rotation)	B1 B1